Articles | Volume 1, issue 1
https://doi.org/10.5194/wcd-1-127-2020
https://doi.org/10.5194/wcd-1-127-2020
Research article
 | 
09 Apr 2020
Research article |  | 09 Apr 2020

Potential vorticity structure of embedded convection in a warm conveyor belt and its relevance for large-scale dynamics

Annika Oertel, Maxi Boettcher, Hanna Joos, Michael Sprenger, and Heini Wernli

Related authors

Sensitivities of simulated mixed-phase Arctic multilayer clouds to primary and secondary ice processes
Gabriella Wallentin, Annika Oertel, Luisa Ickes, Peggy Achtert, Matthias Tesche, and Corinna Hoose
Atmos. Chem. Phys., 25, 6607–6631, https://doi.org/10.5194/acp-25-6607-2025,https://doi.org/10.5194/acp-25-6607-2025, 2025
Short summary
Microphysical Parameter Choices Modulate Ice Content and Relative Humidity in the Outflow of a Warm Conveyor Belt
Cornelis Schwenk, Annette Miltenberger, and Annika Oertel
EGUsphere, https://doi.org/10.5194/egusphere-2025-1816,https://doi.org/10.5194/egusphere-2025-1816, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
An ERA5 climatology of synoptic-scale negative potential vorticity–jet interactions over the western North Atlantic
Alexander Lojko, Andrew C. Winters, Annika Oertel, Christiane Jablonowski, and Ashley E. Payne
Weather Clim. Dynam., 6, 387–411, https://doi.org/10.5194/wcd-6-387-2025,https://doi.org/10.5194/wcd-6-387-2025, 2025
Short summary
From sea to sky: understanding the sea surface temperature impact on an atmospheric blocking event using sensitivity experiments with the ICOsahedral Nonhydrostatic (ICON) model
Svenja Christ, Marta Wenta, Christian M. Grams, and Annika Oertel
Weather Clim. Dynam., 6, 17–42, https://doi.org/10.5194/wcd-6-17-2025,https://doi.org/10.5194/wcd-6-17-2025, 2025
Short summary
Visual analysis of model parameter sensitivities along warm conveyor belt trajectories using Met.3D (1.6.0-multivar1)
Christoph Neuhauser, Maicon Hieronymus, Michael Kern, Marc Rautenhaus, Annika Oertel, and Rüdiger Westermann
Geosci. Model Dev., 16, 4617–4638, https://doi.org/10.5194/gmd-16-4617-2023,https://doi.org/10.5194/gmd-16-4617-2023, 2023
Short summary

Related subject area

Dynamical processes in midlatitudes
Environments and lifting mechanisms of cold-frontal convective cells during the warm season in Germany
George Pacey, Stephan Pfahl, and Lisa Schielicke
Weather Clim. Dynam., 6, 695–713, https://doi.org/10.5194/wcd-6-695-2025,https://doi.org/10.5194/wcd-6-695-2025, 2025
Short summary
Seasonal to decadal variability and persistence properties of the Euro-Atlantic jet streams characterized by complementary approaches
Hugo Banderier, Alexandre Tuel, Tim Woollings, and Olivia Martius
Weather Clim. Dynam., 6, 715–739, https://doi.org/10.5194/wcd-6-715-2025,https://doi.org/10.5194/wcd-6-715-2025, 2025
Short summary
Minimal influence of future Arctic sea ice loss on North Atlantic jet stream morphology
Yvonne Anderson, Jacob Perez, and Amanda C. Maycock
Weather Clim. Dynam., 6, 595–608, https://doi.org/10.5194/wcd-6-595-2025,https://doi.org/10.5194/wcd-6-595-2025, 2025
Short summary
Weather type reconstruction using machine learning approaches
Lucas Pfister, Lena Wilhelm, Yuri Brugnara, Noemi Imfeld, and Stefan Brönnimann
Weather Clim. Dynam., 6, 571–594, https://doi.org/10.5194/wcd-6-571-2025,https://doi.org/10.5194/wcd-6-571-2025, 2025
Short summary
Temporally and zonally varying atmospheric waveguides – climatologies and connections to quasi-stationary waves
Rachel H. White and Lualawi Mareshet Admasu
Weather Clim. Dynam., 6, 549–570, https://doi.org/10.5194/wcd-6-549-2025,https://doi.org/10.5194/wcd-6-549-2025, 2025
Short summary

Cited articles

Agustì-Panareda, A., Gray, S. L., and Methven, J.: Numerical modeling study of boundary-layer ventilation by a cold front over Europe, J. Geophys. Res.-Atmos., 110, D18304, https://doi.org/10.1029/2004JD005555, 2005. a
Anthes, R. A., Kuo, Y.-H., and Gyakum, J. R.: Numerical simulations of a case of explosive marine cyclogenesis, Mon. Weather Rev., 111, 1174–1188, https://doi.org/10.1175/1520-0493(1983)111<1174:NSOACO>2.0.CO;2, 1983. a
Attinger, R., Spreitzer, E., Boettcher, M., Forbes, R., Wernli, H., and Joos, H.: Quantifying the role of individual diabatic processes for the formation of PV anomalies in a North Pacific cyclone, Q. J. Roy. Meteorol. Soc., 145, 2454–2476, https://doi.org/10.1002/qj.3573, 2019. a
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T.: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities, Mon. Weather Rev., 139, 3887–3905, https://doi.org/10.1175/MWR-D-10-05013.1, 2011. a, b, c
Ban, N., Schmidli, J., and Schär, C.: Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations, J. Geophys. Res.-Atmos., 119, 7889–7907, https://doi.org/10.1002/2014JD021478, 2014. a
Download
Short summary
Warm conveyor belts (WCBs) are important, mainly stratiform cloud forming airstreams in extratropical cyclones that can include embedded convection. This WCB case study systematically compares the characteristics of convective vs. slantwise ascent of the WCB. We find that embedded convection leads to regions of significantly stronger precipitation. Moreover, it strongly modifies the potential vorticity distribution in the lower and upper troposphere, where its also influences the waveguide.
Share