Articles | Volume 5, issue 4
https://doi.org/10.5194/wcd-5-1299-2024
https://doi.org/10.5194/wcd-5-1299-2024
Review article
 | 
24 Oct 2024
Review article |  | 24 Oct 2024

The importance of diabatic processes for the dynamics of synoptic-scale extratropical weather systems – a review

Heini Wernli and Suzanne L. Gray

Related authors

A new look at the jet-storm track relationship in the North Pacific and North Atlantic
Nora Zilibotti, Heini Wernli, and Sebastian Schemm
EGUsphere, https://doi.org/10.5194/egusphere-2025-3605,https://doi.org/10.5194/egusphere-2025-3605, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
An object-based and Lagrangian view on an intense hailstorm day in Switzerland as represented in COSMO-1E ensemble hindcast simulations
Killian P. Brennan, Michael Sprenger, André Walser, Marco Arpagaus, and Heini Wernli
Weather Clim. Dynam., 6, 645–668, https://doi.org/10.5194/wcd-6-645-2025,https://doi.org/10.5194/wcd-6-645-2025, 2025
Short summary
Characteristics and dynamics of extreme winters in the Barents Sea in a changing climate
Katharina Hartmuth, Heini Wernli, and Lukas Papritz
Weather Clim. Dynam., 6, 505–520, https://doi.org/10.5194/wcd-6-505-2025,https://doi.org/10.5194/wcd-6-505-2025, 2025
Short summary
Case study of a long-lived Siberian summer cyclone that evolved from a heat low into an Arctic cyclone
Franziska Schnyder, Ming Hon Franco Lee, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2025-1724,https://doi.org/10.5194/egusphere-2025-1724, 2025
Short summary
The interaction of warm conveyor belt outflows with the upper-level waveguide: a four-type climatological classification
Selvakumar Vishnupriya, Michael Sprenger, Hanna Joos, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2025-1731,https://doi.org/10.5194/egusphere-2025-1731, 2025
Short summary

Related subject area

Dynamical processes in midlatitudes
Extreme weather anomalies and surface signatures associated with merged Atlantic–African jets during northern winter
Sohan Suresan, Nili Harnik, and Rodrigo Caballero
Weather Clim. Dynam., 6, 789–806, https://doi.org/10.5194/wcd-6-789-2025,https://doi.org/10.5194/wcd-6-789-2025, 2025
Short summary
Long vs. short: understanding the dynamics of persistent summer hot spells in Europe
Duncan Pappert, Alexandre Tuel, Dim Coumou, Mathieu Vrac, and Olivia Martius
Weather Clim. Dynam., 6, 769–788, https://doi.org/10.5194/wcd-6-769-2025,https://doi.org/10.5194/wcd-6-769-2025, 2025
Short summary
Environments and lifting mechanisms of cold-frontal convective cells during the warm season in Germany
George Pacey, Stephan Pfahl, and Lisa Schielicke
Weather Clim. Dynam., 6, 695–713, https://doi.org/10.5194/wcd-6-695-2025,https://doi.org/10.5194/wcd-6-695-2025, 2025
Short summary
Seasonal to decadal variability and persistence properties of the Euro-Atlantic jet streams characterized by complementary approaches
Hugo Banderier, Alexandre Tuel, Tim Woollings, and Olivia Martius
Weather Clim. Dynam., 6, 715–739, https://doi.org/10.5194/wcd-6-715-2025,https://doi.org/10.5194/wcd-6-715-2025, 2025
Short summary
A pan-European analysis of large-scale drivers of severe convective outbreaks
Monika Feldmann, Daniela I. V. Domeisen, and Olivia Martius
EGUsphere, https://doi.org/10.5194/egusphere-2025-2296,https://doi.org/10.5194/egusphere-2025-2296, 2025
Short summary

Cited articles

Abatzoglou, J. T. and Magnusdottir, G.: Planetary wave breaking and nonlinear reflection: Seasonal cycle and interannual variability, J. Climate, 19, 6139–6152, https://doi.org/10.1175/JCLI3968.1, 2006. a
Adakudlu, M.: Impact of different initial conditions on the growth of polar lows: Idealised baroclinic channel simulations, Q. J. Roy. Meteorol. Soc., 138, 1297–1307, https://doi.org/10.1002/qj.1867, 2012. a
Adamson, D. S., Belcher, S. E., Hoskins, B. J., and Plant, R. S.: Boundary-layer friction in midlatitude cyclones, Q. J. Roy. Meteorol. Soc., 132, 101–124, https://doi.org/10.1256/QJ.04.145, 2006. a, b, c, d, e
Aebischer, U. and Schär, C.: Low-level potential vorticity and cyclogenesis to the lee of the Alps, J. Atmos. Sci., 55, 186–207, https://doi.org/10.1175/1520-0469(1998)055<0186:LLPVAC>2.0.CO;2, 1998. a, b
Agustí-Panareda, A., Thorncroft, C. D., Craig, G. C., and Gray, S. L.: The extratropical transition of Hurricane Irene (1999): A potential-vorticity perspective, Q. J. Roy. Meteorol. Soc., 130, 1047–1074, https://doi.org/10.1256/qj.02.140, 2004. a, b, c
Short summary
The science of extratropical dynamics has reached a new level where the interplay of dry dynamics with effects of latent heating in clouds and other diabatic processes is considered central to the field. This review documents how research about the role of diabatic processes evolved over more than a century; it highlights that progress relied essentially on the integration of theory, field campaigns, novel diagnostics, and numerical modelling, and it outlines avenues for future research.
Share