Articles | Volume 1, issue 2
Weather Clim. Dynam., 1, 541–553, 2020
https://doi.org/10.5194/wcd-1-541-2020
Weather Clim. Dynam., 1, 541–553, 2020
https://doi.org/10.5194/wcd-1-541-2020

Research article 17 Oct 2020

Research article | 17 Oct 2020

Stratospheric influence on North Atlantic marine cold air outbreaks following sudden stratospheric warming events

Hilla Afargan-Gerstman et al.

Related authors

Interaction between Atlantic cyclones and Eurasian atmospheric blocking drives warm extremes in the high Arctic
Sonja Murto, Rodrigo Caballero, Gunilla Svensson, and Lukas Papritz
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-23,https://doi.org/10.5194/wcd-2021-23, 2021
Preprint under review for WCD
Short summary
Interactive 3-D visual analysis of ERA 5 data: improving diagnostic indices for marine cold air outbreaks
Marcel Meyer, Iuliia Polkova, Kameswar Rao Modali, Laura Schaffer, Johanna Baehr, Stephan Olbrich, and Marc Rautenhaus
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-20,https://doi.org/10.5194/wcd-2021-20, 2021
Preprint under review for WCD
Short summary
Identification, characteristics, and dynamics of Arctic extreme seasons
Katharina Hartmuth, Maxi Boettcher, Heini Wernli, and Lukas Papritz
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-18,https://doi.org/10.5194/wcd-2021-18, 2021
Preprint under review for WCD
Short summary
Extended-range predictability of sudden stratospheric warming events suggested by mode decomposition
Zheng Wu, Bernat Jiménez-Esteve, Raphaël de Fondeville, Enikő Székely, Guillaume Obozinski, William T. Ball, and Daniela I. V. Domeisen
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-14,https://doi.org/10.5194/wcd-2021-14, 2021
Preprint under review for WCD
Short summary
The depth scales of the AMOC on a decadal timescale
Tim Rohrschneider, Johanna Baehr, Veit Lüschow, Dian Putrasahan, and Jochem Marotzke
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-124,https://doi.org/10.5194/os-2020-124, 2021
Preprint under review for OS
Short summary

Related subject area

Dynamical processes in polar regions, incl. polar–midlatitude interactions
Polar lows – moist-baroclinic cyclones developing in four different vertical wind shear environments
Patrick Johannes Stoll, Thomas Spengler, Annick Terpstra, and Rune Grand Graversen
Weather Clim. Dynam., 2, 19–36, https://doi.org/10.5194/wcd-2-19-2021,https://doi.org/10.5194/wcd-2-19-2021, 2021
Short summary
Lagrangian detection of precipitation moisture sources for an arid region in northeast Greenland: relations to the North Atlantic Oscillation, sea ice cover, and temporal trends from 1979 to 2017
Lilian Schuster, Fabien Maussion, Lukas Langhamer, and Gina E. Moseley
Weather Clim. Dynam., 2, 1–17, https://doi.org/10.5194/wcd-2-1-2021,https://doi.org/10.5194/wcd-2-1-2021, 2021
Short summary
A Lagrangian analysis of the dynamical and thermodynamic drivers of large-scale Greenland melt events during 1979–2017
Mauro Hermann, Lukas Papritz, and Heini Wernli
Weather Clim. Dynam., 1, 497–518, https://doi.org/10.5194/wcd-1-497-2020,https://doi.org/10.5194/wcd-1-497-2020, 2020
Short summary
Intermittency of Arctic–mid-latitude teleconnections: stratospheric pathway between autumn sea ice and the winter North Atlantic Oscillation
Peter Yu Feng Siew, Camille Li, Stefan Pieter Sobolowski, and Martin Peter King
Weather Clim. Dynam., 1, 261–275, https://doi.org/10.5194/wcd-1-261-2020,https://doi.org/10.5194/wcd-1-261-2020, 2020
Short summary
The role of wave–wave interactions in sudden stratospheric warming formation
Erik A. Lindgren and Aditi Sheshadri
Weather Clim. Dynam., 1, 93–109, https://doi.org/10.5194/wcd-1-93-2020,https://doi.org/10.5194/wcd-1-93-2020, 2020
Short summary

Cited articles

Afargan-Gerstman, H. and Domeisen, D. I. V.: Pacific modulation of the North Atlantic storm track response to sudden stratospheric warming events, Geophys. Res. Lett., 47, e2019GL085007, https://doi.org/10.1029/2019GL085007, 2020. a, b
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric harbingers of anomalous weather regimes, Science, 294, 581–584, 2001. a, b
Beerli, R. and Grams, C. M.: Stratospheric modulation of the large-scale circulation in the Atlantic–European region and its implications for surface weather events, Q. J. Roy. Meteorol. Soc., 145, 3732–3750, 2019. a, b, c
Buckley, M. W. and Marshall, J.: Observations, inferences, and mechanisms of Atlantic Meridional Overturning Circulation variability: A review, Rev. Geophys., 54, 5–63, https://doi.org/10.1002/2015RG000493, 2016. a
Butler, A. H., Sjoberg, J. P., Seidel, D. J., and Rosenlof, K. H.: A sudden stratospheric warming compendium, Earth Syst. Sci. Data, 9, 63–76, https://doi.org/10.5194/essd-9-63-2017, 2017. a, b, c
Download
Short summary
We investigate the stratospheric influence on marine cold air outbreaks (MCAOs) in the North Atlantic using ERA-Interim reanalysis data. MCAOs are associated with severe Arctic weather, such as polar lows and strong surface winds. Sudden stratospheric events are found to be associated with more frequent MCAOs in the Barents and the Norwegian seas, affected by the anomalous circulation over Greenland and Scandinavia. Identification of MCAO precursors is crucial for improved long-range prediction.