Articles | Volume 2, issue 1
https://doi.org/10.5194/wcd-2-55-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-2-55-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The storm-track suppression over the western North Pacific from a cyclone life-cycle perspective
Sebastian Schemm
CORRESPONDING AUTHOR
Institute for Atmospheric and Climate Science, Universitätstrasse 16, 8092 Zurich, Switzerland
Heini Wernli
Institute for Atmospheric and Climate Science, Universitätstrasse 16, 8092 Zurich, Switzerland
Hanin Binder
Institute for Atmospheric and Climate Science, Universitätstrasse 16, 8092 Zurich, Switzerland
Related authors
Nora Zilibotti, Heini Wernli, and Sebastian Schemm
EGUsphere, https://doi.org/10.5194/egusphere-2025-3605, https://doi.org/10.5194/egusphere-2025-3605, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
This study investigates the relationship between jet strength and storm track activity in the North Pacific and North Atlantic with a new approach that does not rely on monthly averaging. We find a consistent behaviour in the two basins, with two distinct relationships on seasonal and sub-monthly timescales emerging. This work underlines the importance of separating different timescales of variability to understand the interplay of jet characteristics and storm track activity.
Jan Zibell, Alejandro Hermoso, Aaron Donohoe, and Sebastian Schemm
EGUsphere, https://doi.org/10.5194/egusphere-2025-2314, https://doi.org/10.5194/egusphere-2025-2314, 2025
Short summary
Short summary
The high-frequent moist static energy (MSE) flux dominates poleward atmospheric heat transport in the Southern Hemisphere. In this study, we investigate how this high-frequent eddy MSE flux evolves over the life cycle of extratropical cyclones. By attributing eddy MSE fluxes to nearby cyclones, we assess the contribution of individual cyclones to zonally integrated atmospheric heat transport and discuss the relationship between cyclone numbers and atmospheric heat transport on a seasonal scale.
Alexander Pietak, Langwen Huang, Luigi Fusco, Michael Sprenger, Sebastian Schemm, and Torsten Hoefler
EGUsphere, https://doi.org/10.5194/egusphere-2025-793, https://doi.org/10.5194/egusphere-2025-793, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
As meteorological models grow in complexity, the volume of output data increases, making compression increasingly desirable. However, no specialized methods currently exist for compressing data in the Lagrangian frame. To address this gap, we developed psit, a pipeline for the lossy compression of Lagrangian flow data. In most cases, psit achieves performance that is equivalent or superior to non specialized alternatives, with compression errors behaving similar to measurement inaccuracies.
Mona Bukenberger, Lena Fasnacht, Stefan Rüdisühli, and Sebastian Schemm
Weather Clim. Dynam., 6, 279–316, https://doi.org/10.5194/wcd-6-279-2025, https://doi.org/10.5194/wcd-6-279-2025, 2025
Short summary
Short summary
The jet stream is a band of strong westerly winds, within which jet streaks are regions of faster wind speeds that can aid storm development. This study analyses jet streaks over the North Atlantic during winter. Jet streaks are linked to pairs of surface anticyclones and cyclones and are often accompanied by intense precipitation, especially extreme jet streaks. With cloud processes playing an increased role in extreme jet streaks, follow-up studies concerning their role are warranted.
Victoria M. Bauer, Sebastian Schemm, Raphael Portmann, Jingzhi Zhang, Gesa K. Eirund, Steven J. De Hertog, and Jan Zibell
Earth Syst. Dynam., 16, 379–409, https://doi.org/10.5194/esd-16-379-2025, https://doi.org/10.5194/esd-16-379-2025, 2025
Short summary
Short summary
Past research has shown that the North Atlantic Ocean circulation reacts strongly to global forest cover changes. Using Earth system model simulations featuring idealised forestation and deforestation of North America, this study shows that the North Atlantic Ocean is highly sensitive to upstream land cover changes. Anomalies in air temperature over land propagate downstream and modify ocean-to-atmosphere heat fluxes over the North Atlantic through altering the cold-air outbreak frequency.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Steven J. De Hertog, Carmen E. Lopez-Fabara, Ruud van der Ent, Jessica Keune, Diego G. Miralles, Raphael Portmann, Sebastian Schemm, Felix Havermann, Suqi Guo, Fei Luo, Iris Manola, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 15, 265–291, https://doi.org/10.5194/esd-15-265-2024, https://doi.org/10.5194/esd-15-265-2024, 2024
Short summary
Short summary
Changes in land use are crucial to achieve lower global warming. However, despite their importance, the effects of these changes on moisture fluxes are poorly understood. We analyse land cover and management scenarios in three climate models involving cropland expansion, afforestation, and irrigation. Results show largely consistent influences on moisture fluxes, with cropland expansion causing a drying and reduced local moisture recycling, while afforestation and irrigation show the opposite.
Sebastian Schemm and Matthias Röthlisberger
Weather Clim. Dynam., 5, 43–63, https://doi.org/10.5194/wcd-5-43-2024, https://doi.org/10.5194/wcd-5-43-2024, 2024
Short summary
Short summary
Climate change has started to weaken atmospheric circulation during summer in the Northern Hemisphere. However, there is low agreement on the processes underlying changes in, for example, the stationarity of weather patterns or the seasonality of the jet response to warming. This study examines changes during summertime in an idealised setting and confirms some important changes in hemisphere-wide wave and jet characteristics under warming.
Steven J. De Hertog, Carmen E. Lopez-Fabara, Ruud van der Ent, Jessica Keune, Diego G. Miralles, Raphael Portmann, Sebastian Schemm, Felix Havermann, Suqi Guo, Fei Luo, Iris Manola, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2023-953, https://doi.org/10.5194/egusphere-2023-953, 2023
Preprint archived
Short summary
Short summary
Land cover and management changes can affect the climate and water availability. In this study we use climate model simulations of extreme global land cover changes (afforestation, deforestation) and land management changes (irrigation) to understand the effects on the global water cycle and local to continental water availability. We show that cropland expansion generally leads to higher evaporation and lower amounts of precipitation and afforestation and irrigation expansion to the opposite.
Sebastian Schemm, Lukas Papritz, and Gwendal Rivière
Weather Clim. Dynam., 3, 601–623, https://doi.org/10.5194/wcd-3-601-2022, https://doi.org/10.5194/wcd-3-601-2022, 2022
Short summary
Short summary
Much of the change in our daily weather patterns is due to the development and intensification of extratropical cyclones. The response of these systems to climate change is an important topic of ongoing research. This study is the first to reproduce the changes in the North Atlantic circulation and extratropical cyclone characteristics found in fully coupled Earth system models under high-CO2 scenarios, but in an idealized, reduced-complexity simulation with uniform warming.
Philippe Besson, Luise J. Fischer, Sebastian Schemm, and Michael Sprenger
Weather Clim. Dynam., 2, 991–1009, https://doi.org/10.5194/wcd-2-991-2021, https://doi.org/10.5194/wcd-2-991-2021, 2021
Short summary
Short summary
The strongest cyclone intensification is associated with a strong dry-dynamical forcing. Moreover, strong forcing and strong intensification correspond to a tendency for poleward cyclone propagation, which occurs in distinct regions in the Northern Hemisphere. There is a clear spatial pattern in the occurrence of certain forcing combinations. This implies a fundamental relationship between dry-dynamical processes and the intensification as well as the propagation of extratropical cyclones.
Gabriel Vollenweider, Elisa Spreitzer, and Sebastian Schemm
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-31, https://doi.org/10.5194/wcd-2021-31, 2021
Publication in WCD not foreseen
Short summary
Short summary
The interactions between the dry and moist components of the atmosphere and the influence of, for example, the phase transition of water on the atmospheric circulation are often studied from the potential vorticity (PV) framework. Changes in the PV due to, for example, condensation can relate to changes in the static stability or vorticity. To better the interaction between these two drivers of PV changes, we explore the usefulness of a novel vorticity-and-stability diagram.
Sebastian Schemm, Stefan Rüdisühli, and Michael Sprenger
Weather Clim. Dynam., 1, 459–479, https://doi.org/10.5194/wcd-1-459-2020, https://doi.org/10.5194/wcd-1-459-2020, 2020
Short summary
Short summary
Troughs and ridges are ubiquitous flow features in the upper troposphere and are centerpiece elements of weather and climate research. A novel method is introduced to identify and track the life cycle of troughs and ridges and their orientation. The aim is to close the existing gap between methods that detect the initiation phase and methods that detect the decaying phase of Rossby wave development. Global climatologies, the influence of ENSO and Lagrangian characteristics are discussed.
Katharina Hartmuth, Dominik Büeler, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2025-4111, https://doi.org/10.5194/egusphere-2025-4111, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
This study presents three case studies of applying a newly developed method to quantify the uncertainty of the operational ECMWF ensemble in forecasting precipitation and wind extremes associated with Mediterranean cyclones. We find that the cyclones as well as their associated extremes are predicted well for lead times ≤48 h; however, for longer lead times there is large case-to-case variability in the ensemble performance.
Nora Zilibotti, Heini Wernli, and Sebastian Schemm
EGUsphere, https://doi.org/10.5194/egusphere-2025-3605, https://doi.org/10.5194/egusphere-2025-3605, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
This study investigates the relationship between jet strength and storm track activity in the North Pacific and North Atlantic with a new approach that does not rely on monthly averaging. We find a consistent behaviour in the two basins, with two distinct relationships on seasonal and sub-monthly timescales emerging. This work underlines the importance of separating different timescales of variability to understand the interplay of jet characteristics and storm track activity.
Jacopo Riboldi, Robin Noyelle, Ellina Agayar, Hanin Binder, Marc Federer, Katharina Hartmuth, Michael Sprenger, Iris Thurnherr, and Selvakumar Vishnupriya
EGUsphere, https://doi.org/10.5194/egusphere-2025-3599, https://doi.org/10.5194/egusphere-2025-3599, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Storm Boris hit central Europe in September 2024 with extreme precipitation and impacts: this work introduces a methodology to strengthen our comprehension of how global warming affects similar events, based on the incorporation of event-specific meteorological information. Furthermore, it contextualizes how the answer to the question "How will Boris-like storms change in a warmer climate?" depends on explicit and implicit methodological choices, with the aim to inform future research.
Kai Jeggle, David Neubauer, Hanin Binder, and Ulrike Lohmann
Atmos. Chem. Phys., 25, 7227–7243, https://doi.org/10.5194/acp-25-7227-2025, https://doi.org/10.5194/acp-25-7227-2025, 2025
Short summary
Short summary
This work uncovers the formation regimes of cirrus clouds and how dust particles influence their properties. By applying machine learning to a combination of satellite and reanalysis data, cirrus clouds are classified into different formation regimes. Depending on the regime, increasing dust aerosol concentrations can either decrease or increase the number of ice crystals. This challenges the idea of using cloud seeding to cool the planet, as it may unintentionally lead to warming instead.
Killian P. Brennan, Michael Sprenger, André Walser, Marco Arpagaus, and Heini Wernli
Weather Clim. Dynam., 6, 645–668, https://doi.org/10.5194/wcd-6-645-2025, https://doi.org/10.5194/wcd-6-645-2025, 2025
Short summary
Short summary
We studied severe hailstorms that occurred in Switzerland on 28 June 2021 using a weather prediction model to understand how they evolved. We found that the storms moved toward areas with more storm energy. Hailfall was quickly followed by heavy rain. Just before the storms died out, the air feeding them stopped coming from near the ground. We also observed a delay between different types of precipitation forming in the incoming air.
Jan Zibell, Alejandro Hermoso, Aaron Donohoe, and Sebastian Schemm
EGUsphere, https://doi.org/10.5194/egusphere-2025-2314, https://doi.org/10.5194/egusphere-2025-2314, 2025
Short summary
Short summary
The high-frequent moist static energy (MSE) flux dominates poleward atmospheric heat transport in the Southern Hemisphere. In this study, we investigate how this high-frequent eddy MSE flux evolves over the life cycle of extratropical cyclones. By attributing eddy MSE fluxes to nearby cyclones, we assess the contribution of individual cyclones to zonally integrated atmospheric heat transport and discuss the relationship between cyclone numbers and atmospheric heat transport on a seasonal scale.
Katharina Hartmuth, Heini Wernli, and Lukas Papritz
Weather Clim. Dynam., 6, 505–520, https://doi.org/10.5194/wcd-6-505-2025, https://doi.org/10.5194/wcd-6-505-2025, 2025
Short summary
Short summary
In this study, we use large-ensemble climate model simulations to analyze extreme winters in the Barents Sea in a changing climate. We find that variability in both atmospheric processes and sea ice conditions determines the formation of such seasons in the present-day climate. The reduction in sea ice variability results in a decreasing importance of surface boundary conditions in a warmer climate, while the robust link shown for surface weather systems persists.
Franziska Schnyder, Ming Hon Franco Lee, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2025-1724, https://doi.org/10.5194/egusphere-2025-1724, 2025
Short summary
Short summary
In this study, we investigate a particularly long-lived example of a Siberian summer cyclone, which originates during a heat wave in Kazakhstan in July 2021 and propagates into the Arctic, where it leads to heavy precipitation and alters the Arctic tropopause. Although a rare event in current climate, this case reveals how compounding events may be linked by one weather system and portrays a type of cyclone event which is likely to become more frequent in a warmer climate.
Selvakumar Vishnupriya, Michael Sprenger, Hanna Joos, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2025-1731, https://doi.org/10.5194/egusphere-2025-1731, 2025
Short summary
Short summary
Extratropical cyclones feature rapidly ascending airstreams known as warm conveyor belts, which influence upper-level flow dynamics. This study classifies interactions of warm conveyor belts with the jet stream into four types: no interactions, ridges, blocks, and tropospheric cutoffs. We use reanalysis data to show that the interaction type depends more on the structure of the ambient flow than on the WCB properties, which improves the understanding of extratropical flow variability.
Nicolai Krieger, Heini Wernli, Michael Sprenger, and Christian Kühnlein
Weather Clim. Dynam., 6, 447–469, https://doi.org/10.5194/wcd-6-447-2025, https://doi.org/10.5194/wcd-6-447-2025, 2025
Short summary
Short summary
This study investigates the Laseyer, a local windstorm in a narrow Swiss valley characterized by strong southeasterly winds during northwesterly ambient flow. Using large-eddy simulations (LESs) with 30 m grid spacing, this is the first study to reveal that the extreme gusts in the valley are caused by an amplifying interplay of two recirculation regions. Modifying terrain and ambient wind conditions affects the windstorm's intensity and highlights the importance of topographic details in LES.
Alexander Pietak, Langwen Huang, Luigi Fusco, Michael Sprenger, Sebastian Schemm, and Torsten Hoefler
EGUsphere, https://doi.org/10.5194/egusphere-2025-793, https://doi.org/10.5194/egusphere-2025-793, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
As meteorological models grow in complexity, the volume of output data increases, making compression increasingly desirable. However, no specialized methods currently exist for compressing data in the Lagrangian frame. To address this gap, we developed psit, a pipeline for the lossy compression of Lagrangian flow data. In most cases, psit achieves performance that is equivalent or superior to non specialized alternatives, with compression errors behaving similar to measurement inaccuracies.
Killian P. Brennan, Iris Thurnherr, Michael Sprenger, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2025-918, https://doi.org/10.5194/egusphere-2025-918, 2025
Short summary
Short summary
Hailstorms can cause severe damage to homes, crops, and infrastructure. Using high-resolution climate simulations, we tracked thousands of hailstorms across Europe to study future changes. Large hail will become more frequent, hail-covered areas will expand, and extreme hail combined with heavy rain will double. These shifts could increase risks for communities and businesses, highlighting the need for better preparedness and adaptation.
Mona Bukenberger, Lena Fasnacht, Stefan Rüdisühli, and Sebastian Schemm
Weather Clim. Dynam., 6, 279–316, https://doi.org/10.5194/wcd-6-279-2025, https://doi.org/10.5194/wcd-6-279-2025, 2025
Short summary
Short summary
The jet stream is a band of strong westerly winds, within which jet streaks are regions of faster wind speeds that can aid storm development. This study analyses jet streaks over the North Atlantic during winter. Jet streaks are linked to pairs of surface anticyclones and cyclones and are often accompanied by intense precipitation, especially extreme jet streaks. With cloud processes playing an increased role in extreme jet streaks, follow-up studies concerning their role are warranted.
Victoria M. Bauer, Sebastian Schemm, Raphael Portmann, Jingzhi Zhang, Gesa K. Eirund, Steven J. De Hertog, and Jan Zibell
Earth Syst. Dynam., 16, 379–409, https://doi.org/10.5194/esd-16-379-2025, https://doi.org/10.5194/esd-16-379-2025, 2025
Short summary
Short summary
Past research has shown that the North Atlantic Ocean circulation reacts strongly to global forest cover changes. Using Earth system model simulations featuring idealised forestation and deforestation of North America, this study shows that the North Atlantic Ocean is highly sensitive to upstream land cover changes. Anomalies in air temperature over land propagate downstream and modify ocean-to-atmosphere heat fluxes over the North Atlantic through altering the cold-air outbreak frequency.
Hanin Binder and Heini Wernli
Weather Clim. Dynam., 6, 151–170, https://doi.org/10.5194/wcd-6-151-2025, https://doi.org/10.5194/wcd-6-151-2025, 2025
Short summary
Short summary
This study presents a systematic analysis of frequency anomalies and characteristics of extratropical cyclones during extremely wet, dry, windy, and calm winter and summer seasons in the extratropics based on 1050 years of present-day climate simulations. We show that anomalies in cyclone frequency, intensity, and stationarity are crucial to the occurrence of many extreme seasons and that these anomaly patterns exhibit substantial regional and seasonal variability.
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025, https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary
Short summary
We explore a high-level programming model for porting numerical weather prediction (NWP) model codes to graphics processing units (GPUs). We present a Python rewrite with the domain-specific library GT4Py (GridTools for Python) of two renowned cloud microphysics schemes and the associated tangent-linear and adjoint algorithms. We find excellent portability, competitive GPU performance, robust execution on diverse computing architectures, and enhanced code maintainability and user productivity.
Stephanie Mayer, Martin Hendrick, Adrien Michel, Bettina Richter, Jürg Schweizer, Heini Wernli, and Alec van Herwijnen
The Cryosphere, 18, 5495–5517, https://doi.org/10.5194/tc-18-5495-2024, https://doi.org/10.5194/tc-18-5495-2024, 2024
Short summary
Short summary
Understanding the impact of climate change on snow avalanche activity is crucial for safeguarding lives and infrastructure. Here, we project changes in avalanche activity in the Swiss Alps throughout the 21st century. Our findings reveal elevation-dependent patterns of change, indicating a decrease in dry-snow avalanches alongside an increase in wet-snow avalanches at elevations above the current treeline. These results underscore the necessity to revisit measures for avalanche risk mitigation.
Heini Wernli and Suzanne L. Gray
Weather Clim. Dynam., 5, 1299–1408, https://doi.org/10.5194/wcd-5-1299-2024, https://doi.org/10.5194/wcd-5-1299-2024, 2024
Short summary
Short summary
The science of extratropical dynamics has reached a new level where the interplay of dry dynamics with effects of latent heating in clouds and other diabatic processes is considered central to the field. This review documents how research about the role of diabatic processes evolved over more than a century; it highlights that progress relied essentially on the integration of theory, field campaigns, novel diagnostics, and numerical modelling, and it outlines avenues for future research.
Ellina Agayar, Franziska Aemisegger, Moshe Armon, Alexander Scherrmann, and Heini Wernli
Nat. Hazards Earth Syst. Sci., 24, 2441–2459, https://doi.org/10.5194/nhess-24-2441-2024, https://doi.org/10.5194/nhess-24-2441-2024, 2024
Short summary
Short summary
This study presents the results of a climatological investigation of extreme precipitation events (EPEs) in Ukraine for the period 1979–2019. During all seasons EPEs are associated with pronounced upper-level potential vorticity (PV) anomalies. In addition, we find distinct seasonal and regional differences in moisture sources. Several extreme precipitation cases demonstrate the importance of these processes, complemented by a detailed synoptic analysis.
Luise J. Fischer, David N. Bresch, Dominik Büeler, Christian M. Grams, Matthias Röthlisberger, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1253, https://doi.org/10.5194/egusphere-2024-1253, 2024
Short summary
Short summary
Atmospheric flows over the North Atlantic can be meaningfully classified into weather regimes, and climate simulations suggest that the regime frequencies might change in the future. We provide a quantitative framework that helps assessing whether these regime frequency changes are relevant for understanding climate change signals in precipitation. At least in our example application, this is not the case, i.e., regime frequency changes explain little of the projected precipitation changes.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Katharina Heitmann, Michael Sprenger, Hanin Binder, Heini Wernli, and Hanna Joos
Weather Clim. Dynam., 5, 537–557, https://doi.org/10.5194/wcd-5-537-2024, https://doi.org/10.5194/wcd-5-537-2024, 2024
Short summary
Short summary
Warm conveyor belts (WCBs) are coherently ascending air streams that occur in extratropical cyclones where they form precipitation and often affect the large-scale flow. We quantified the key characteristics and impacts of WCBs and linked them to different phases in the cyclone life cycle and to different WCB branches. A climatology of these metrics revealed that WCBs are most intense during cyclone intensification and that the cyclonic and anticyclonic WCB branches show distinct differences.
Alexander Scherrmann, Heini Wernli, and Emmanouil Flaounas
Weather Clim. Dynam., 5, 419–438, https://doi.org/10.5194/wcd-5-419-2024, https://doi.org/10.5194/wcd-5-419-2024, 2024
Short summary
Short summary
We show that the formation of Mediterranean cyclones follows the presence of cyclones over the North Atlantic. The distinct regions of cyclone activity in the Mediterranean in the different seasons can be linked to the atmospheric state, in particular the position of the polar jet over the North Atlantic. With this we now better understand the processes that lead to the formation of Mediterranean cyclones. We used a novel simulation framework in which we directly show and probe this connection.
Steven J. De Hertog, Carmen E. Lopez-Fabara, Ruud van der Ent, Jessica Keune, Diego G. Miralles, Raphael Portmann, Sebastian Schemm, Felix Havermann, Suqi Guo, Fei Luo, Iris Manola, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 15, 265–291, https://doi.org/10.5194/esd-15-265-2024, https://doi.org/10.5194/esd-15-265-2024, 2024
Short summary
Short summary
Changes in land use are crucial to achieve lower global warming. However, despite their importance, the effects of these changes on moisture fluxes are poorly understood. We analyse land cover and management scenarios in three climate models involving cropland expansion, afforestation, and irrigation. Results show largely consistent influences on moisture fluxes, with cropland expansion causing a drying and reduced local moisture recycling, while afforestation and irrigation show the opposite.
Esther S. Breuninger, Julie Tolu, Iris Thurnherr, Franziska Aemisegger, Aryeh Feinberg, Sylvain Bouchet, Jeroen E. Sonke, Véronique Pont, Heini Wernli, and Lenny H. E. Winkel
Atmos. Chem. Phys., 24, 2491–2510, https://doi.org/10.5194/acp-24-2491-2024, https://doi.org/10.5194/acp-24-2491-2024, 2024
Short summary
Short summary
Atmospheric deposition is an important source of selenium (Se) and other health-relevant trace elements in surface environments. We found that the variability in elemental concentrations in atmospheric deposition reflects not only changes in emission sources but also weather conditions during atmospheric removal. Depending on the sources and if Se is derived more locally or from further away, the Se forms can be different, affecting the bioavailability of Se atmospherically supplied to soils.
Julian F. Quinting, Christian M. Grams, Edmund Kar-Man Chang, Stephan Pfahl, and Heini Wernli
Weather Clim. Dynam., 5, 65–85, https://doi.org/10.5194/wcd-5-65-2024, https://doi.org/10.5194/wcd-5-65-2024, 2024
Short summary
Short summary
Research in the last few decades has revealed that rapidly ascending airstreams in extratropical cyclones have an important effect on the evolution of downstream weather and predictability. In this study, we show that the occurrence of these airstreams over the North Pacific is modulated by tropical convection. Depending on the modulation, known atmospheric circulation patterns evolve quite differently, which may affect extended-range predictions in the Atlantic–European region.
Sebastian Schemm and Matthias Röthlisberger
Weather Clim. Dynam., 5, 43–63, https://doi.org/10.5194/wcd-5-43-2024, https://doi.org/10.5194/wcd-5-43-2024, 2024
Short summary
Short summary
Climate change has started to weaken atmospheric circulation during summer in the Northern Hemisphere. However, there is low agreement on the processes underlying changes in, for example, the stationarity of weather patterns or the seasonality of the jet response to warming. This study examines changes during summertime in an idealised setting and confirms some important changes in hemisphere-wide wave and jet characteristics under warming.
Leonie Villiger, Marina Dütsch, Sandrine Bony, Marie Lothon, Stephan Pfahl, Heini Wernli, Pierre-Etienne Brilouet, Patrick Chazette, Pierre Coutris, Julien Delanoë, Cyrille Flamant, Alfons Schwarzenboeck, Martin Werner, and Franziska Aemisegger
Atmos. Chem. Phys., 23, 14643–14672, https://doi.org/10.5194/acp-23-14643-2023, https://doi.org/10.5194/acp-23-14643-2023, 2023
Short summary
Short summary
This study evaluates three numerical simulations performed with an isotope-enabled weather forecast model and investigates the coupling between shallow trade-wind cumulus clouds and atmospheric circulations on different scales. We show that the simulations reproduce key characteristics of shallow trade-wind clouds as observed during the field experiment EUREC4A and that the spatial distribution of stable-water-vapour isotopes is shaped by the overturning circulation associated with these clouds.
Elena De La Torre Castro, Tina Jurkat-Witschas, Armin Afchine, Volker Grewe, Valerian Hahn, Simon Kirschler, Martina Krämer, Johannes Lucke, Nicole Spelten, Heini Wernli, Martin Zöger, and Christiane Voigt
Atmos. Chem. Phys., 23, 13167–13189, https://doi.org/10.5194/acp-23-13167-2023, https://doi.org/10.5194/acp-23-13167-2023, 2023
Short summary
Short summary
In this study, we show the differences in the microphysical properties between high-latitude (HL) cirrus and mid-latitude (ML) cirrus over the Arctic, North Atlantic, and central Europe during summer. The in situ measurements are combined with backward trajectories to investigate the influence of the region on cloud formation. We show that HL cirrus are characterized by a lower concentration of larger ice crystals when compared to ML cirrus.
Mark J. Rodwell and Heini Wernli
Weather Clim. Dynam., 4, 591–615, https://doi.org/10.5194/wcd-4-591-2023, https://doi.org/10.5194/wcd-4-591-2023, 2023
Short summary
Short summary
Midlatitude storms and their downstream impacts have a major impact on society, yet their prediction is especially prone to uncertainty. While this can never be fully eliminated, we find that the initial rate of growth of uncertainty varies for a range of forecast models. Examination of the model of the European Centre for Medium-Range Weather Forecasts (ECMWF) suggests ways in which uncertainty growth could be reduced, leading to sharper and more reliable forecasts over the first few days.
Steven J. De Hertog, Carmen E. Lopez-Fabara, Ruud van der Ent, Jessica Keune, Diego G. Miralles, Raphael Portmann, Sebastian Schemm, Felix Havermann, Suqi Guo, Fei Luo, Iris Manola, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2023-953, https://doi.org/10.5194/egusphere-2023-953, 2023
Preprint archived
Short summary
Short summary
Land cover and management changes can affect the climate and water availability. In this study we use climate model simulations of extreme global land cover changes (afforestation, deforestation) and land management changes (irrigation) to understand the effects on the global water cycle and local to continental water availability. We show that cropland expansion generally leads to higher evaporation and lower amounts of precipitation and afforestation and irrigation expansion to the opposite.
Mauro Hermann, Matthias Röthlisberger, Arthur Gessler, Andreas Rigling, Cornelius Senf, Thomas Wohlgemuth, and Heini Wernli
Biogeosciences, 20, 1155–1180, https://doi.org/10.5194/bg-20-1155-2023, https://doi.org/10.5194/bg-20-1155-2023, 2023
Short summary
Short summary
This study examines the multi-annual meteorological history of low-forest-greenness events in Europe's temperate and Mediterranean biome in 2002–2022. We systematically identify anomalies in temperature, precipitation, and weather systems as event precursors, with noteworthy differences between the two biomes. We also quantify the impact of the most extensive event in 2022 (37 % coverage), underlining the importance of understanding the forest–meteorology interaction in a changing climate.
Alexander Scherrmann, Heini Wernli, and Emmanouil Flaounas
Weather Clim. Dynam., 4, 157–173, https://doi.org/10.5194/wcd-4-157-2023, https://doi.org/10.5194/wcd-4-157-2023, 2023
Short summary
Short summary
We investigate the dynamical origin of the lower-atmospheric potential vorticity (PV; linked to the intensity of cyclones) in Mediterranean cyclones. We quantify the contribution of the cyclone and the environment by tracing PV backward in time and space and linking it to the track of the cyclone. We find that the lower-tropospheric PV is produced shortly before the cyclone's stage of highest intensity. We investigate the driving processes and use a global dataset and a process-resolving one.
Hanna Joos, Michael Sprenger, Hanin Binder, Urs Beyerle, and Heini Wernli
Weather Clim. Dynam., 4, 133–155, https://doi.org/10.5194/wcd-4-133-2023, https://doi.org/10.5194/wcd-4-133-2023, 2023
Short summary
Short summary
Warm conveyor belts (WCBs) are strongly ascending, cloud- and precipitation-forming airstreams in extratropical cyclones. In this study we assess their representation in a climate simulation and their changes under global warming. They become moister, become more intense, and reach higher altitudes in a future climate, implying that they potentially have an increased impact on the mid-latitude flow.
Andreas Schäfler, Michael Sprenger, Heini Wernli, Andreas Fix, and Martin Wirth
Atmos. Chem. Phys., 23, 999–1018, https://doi.org/10.5194/acp-23-999-2023, https://doi.org/10.5194/acp-23-999-2023, 2023
Short summary
Short summary
In this study, airborne lidar profile measurements of H2O and O3 across a midlatitude jet stream are combined with analyses in tracer–trace space and backward trajectories. We highlight that transport and mixing processes in the history of the observed air masses are governed by interacting tropospheric weather systems on synoptic timescales. We show that these weather systems play a key role in the high variability of the paired H2O and O3 distributions near the tropopause.
Hanin Binder, Hanna Joos, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 4, 19–37, https://doi.org/10.5194/wcd-4-19-2023, https://doi.org/10.5194/wcd-4-19-2023, 2023
Short summary
Short summary
Warm conveyor belts (WCBs) are the main cloud- and precipitation-producing airstreams in extratropical cyclones. The latent heat release that occurs during cloud formation often contributes to the intensification of the associated cyclone. Based on the Community Earth System Model Large Ensemble coupled climate simulations, we show that WCBs and associated latent heating will become stronger in a future climate and be even more important for explosive cyclone intensification than in the present.
Andries Jan de Vries, Franziska Aemisegger, Stephan Pfahl, and Heini Wernli
Atmos. Chem. Phys., 22, 8863–8895, https://doi.org/10.5194/acp-22-8863-2022, https://doi.org/10.5194/acp-22-8863-2022, 2022
Short summary
Short summary
The Earth's water cycle contains the common H2O molecule but also the less abundant, heavier HDO. We use their different physical properties to study tropical ice clouds in model simulations of the West African monsoon. Isotope signals reveal different processes through which ice clouds form and decay in deep-convective and widespread cirrus. Previously observed variations in upper-tropospheric vapour isotopes are explained by microphysical processes in convective updraughts and downdraughts.
Sebastian Schemm, Lukas Papritz, and Gwendal Rivière
Weather Clim. Dynam., 3, 601–623, https://doi.org/10.5194/wcd-3-601-2022, https://doi.org/10.5194/wcd-3-601-2022, 2022
Short summary
Short summary
Much of the change in our daily weather patterns is due to the development and intensification of extratropical cyclones. The response of these systems to climate change is an important topic of ongoing research. This study is the first to reproduce the changes in the North Atlantic circulation and extratropical cyclone characteristics found in fully coupled Earth system models under high-CO2 scenarios, but in an idealized, reduced-complexity simulation with uniform warming.
Philipp Zschenderlein and Heini Wernli
Weather Clim. Dynam., 3, 391–411, https://doi.org/10.5194/wcd-3-391-2022, https://doi.org/10.5194/wcd-3-391-2022, 2022
Short summary
Short summary
Precipitation and temperature are two of the most important variables describing our weather and climate. The relationship between these variables has been studied extensively; however, the role of specific weather systems in shaping this relationship has not been analysed yet. We therefore analyse whether intense precipitation occurs on warmer or on colder days and identify the relevant weather systems. In general, weather systems strongly influence this relationship, especially in winter.
Jan Clemens, Felix Ploeger, Paul Konopka, Raphael Portmann, Michael Sprenger, and Heini Wernli
Atmos. Chem. Phys., 22, 3841–3860, https://doi.org/10.5194/acp-22-3841-2022, https://doi.org/10.5194/acp-22-3841-2022, 2022
Short summary
Short summary
Highly polluted air flows from the surface to higher levels of the atmosphere during the Asian summer monsoon. At high levels, the air is trapped within eddies. Here, we study how air masses can leave the eddy within its cutoff, how they distribute, and how their chemical composition changes. We found evidence for transport from the eddy to higher latitudes over the North Pacific and even Alaska. During transport, trace gas concentrations within cutoffs changed gradually, showing steady mixing.
Katharina Hartmuth, Maxi Boettcher, Heini Wernli, and Lukas Papritz
Weather Clim. Dynam., 3, 89–111, https://doi.org/10.5194/wcd-3-89-2022, https://doi.org/10.5194/wcd-3-89-2022, 2022
Short summary
Short summary
In this study, we introduce a novel method to objectively define and identify extreme Arctic seasons based on different surface variables. We find that such seasons are resulting from various combinations of unusual seasonal conditions. The occurrence or absence of different atmospheric processes strongly affects the character of extreme Arctic seasons. Further, changes in sea ice and sea surface temperature can strongly influence the formation of such a season in distinct regions.
Leonie Villiger, Heini Wernli, Maxi Boettcher, Martin Hagen, and Franziska Aemisegger
Weather Clim. Dynam., 3, 59–88, https://doi.org/10.5194/wcd-3-59-2022, https://doi.org/10.5194/wcd-3-59-2022, 2022
Short summary
Short summary
The coupling between the large-scale atmospheric circulation and the clouds in the trade-wind region is complex and not yet fully understood. In this study, the formation pathway of two anomalous cloud layers over Barbados during the field campaign EUREC4A is described. The two case studies highlight the influence of remote weather systems on the local environmental conditions in Barbados.
Philipp Zschenderlein and Heini Wernli
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-396, https://doi.org/10.5194/nhess-2021-396, 2022
Preprint withdrawn
Short summary
Short summary
In early January 2021, Spain was affected by two extreme events – an unusually long cold spell and a heavy snowfall event associated with extratropical cyclone Filomena. In the study, we analyse the synoptic-dynamic development of the two extreme events. Cold air from the north was advected towards Spain and between 07 and 10 January, cyclone Filomena was responsible for major parts of the snowfall event. During this event, temperature and moisture contrasts accross Spain were very high.
Roman Attinger, Elisa Spreitzer, Maxi Boettcher, Heini Wernli, and Hanna Joos
Weather Clim. Dynam., 2, 1073–1091, https://doi.org/10.5194/wcd-2-1073-2021, https://doi.org/10.5194/wcd-2-1073-2021, 2021
Short summary
Short summary
Diabatic processes affect the development of extratropical cyclones. This work provides a systematic assessment of the diabatic processes that modify potential vorticity (PV) in model simulations. PV is primarily produced by condensation and convection. Given favorable environmental conditions, long-wave radiative cooling and turbulence become the primary process at the cold and warm fronts, respectively. Turbulence and long-wave radiative heating produce negative PV anomalies at the fronts.
Fabienne Dahinden, Franziska Aemisegger, Heini Wernli, Matthias Schneider, Christopher J. Diekmann, Benjamin Ertl, Peter Knippertz, Martin Werner, and Stephan Pfahl
Atmos. Chem. Phys., 21, 16319–16347, https://doi.org/10.5194/acp-21-16319-2021, https://doi.org/10.5194/acp-21-16319-2021, 2021
Short summary
Short summary
We use high-resolution numerical isotope modelling and Lagrangian backward trajectories to identify moisture transport pathways and governing physical and dynamical processes that affect the free-tropospheric humidity and isotopic variability over the eastern subtropical North Atlantic. Furthermore, we conduct a thorough isotope modelling validation with aircraft and remote-sensing observations of water vapour isotopes.
Philippe Besson, Luise J. Fischer, Sebastian Schemm, and Michael Sprenger
Weather Clim. Dynam., 2, 991–1009, https://doi.org/10.5194/wcd-2-991-2021, https://doi.org/10.5194/wcd-2-991-2021, 2021
Short summary
Short summary
The strongest cyclone intensification is associated with a strong dry-dynamical forcing. Moreover, strong forcing and strong intensification correspond to a tendency for poleward cyclone propagation, which occurs in distinct regions in the Northern Hemisphere. There is a clear spatial pattern in the occurrence of certain forcing combinations. This implies a fundamental relationship between dry-dynamical processes and the intensification as well as the propagation of extratropical cyclones.
Gabriel Vollenweider, Elisa Spreitzer, and Sebastian Schemm
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-31, https://doi.org/10.5194/wcd-2021-31, 2021
Publication in WCD not foreseen
Short summary
Short summary
The interactions between the dry and moist components of the atmosphere and the influence of, for example, the phase transition of water on the atmospheric circulation are often studied from the potential vorticity (PV) framework. Changes in the PV due to, for example, condensation can relate to changes in the static stability or vorticity. To better the interaction between these two drivers of PV changes, we explore the usefulness of a novel vorticity-and-stability diagram.
Raphael Portmann, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 2, 507–534, https://doi.org/10.5194/wcd-2-507-2021, https://doi.org/10.5194/wcd-2-507-2021, 2021
Short summary
Short summary
We explore the three-dimensional life cycle of cyclonic structures
(so-called PV cutoffs) near the tropopause. PV cutoffs are frequent weather systems in the extratropics that lead to high-impact weather. However, many unknowns exist regarding their evolution. We present a new method to track PV cutoffs as 3D objects in reanalysis data by following air parcels along the flow. We study the climatological life cycles of PV cutoffs in detail and propose a classification into three types.
Iris Thurnherr, Katharina Hartmuth, Lukas Jansing, Josué Gehring, Maxi Boettcher, Irina Gorodetskaya, Martin Werner, Heini Wernli, and Franziska Aemisegger
Weather Clim. Dynam., 2, 331–357, https://doi.org/10.5194/wcd-2-331-2021, https://doi.org/10.5194/wcd-2-331-2021, 2021
Short summary
Short summary
Extratropical cyclones are important for the transport of moisture from low to high latitudes. In this study, we investigate how the isotopic composition of water vapour is affected by horizontal temperature advection associated with extratropical cyclones using measurements and modelling. It is shown that air–sea moisture fluxes induced by this horizontal temperature advection lead to the strong variability observed in the isotopic composition of water vapour in the marine boundary layer.
Maxi Boettcher, Andreas Schäfler, Michael Sprenger, Harald Sodemann, Stefan Kaufmann, Christiane Voigt, Hans Schlager, Donato Summa, Paolo Di Girolamo, Daniele Nerini, Urs Germann, and Heini Wernli
Atmos. Chem. Phys., 21, 5477–5498, https://doi.org/10.5194/acp-21-5477-2021, https://doi.org/10.5194/acp-21-5477-2021, 2021
Short summary
Short summary
Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones, often leading to the formation of intense precipitation. We present a case study that involves aircraft, lidar and radar observations of water and clouds in a WCB ascending from western Europe across the Alps towards the Baltic Sea during the field campaigns HyMeX and T-NAWDEX-Falcon in October 2012. A probabilistic trajectory measure and an airborne tracer experiment were used to confirm the long pathway of the WCB.
Franziska Aemisegger, Raphaela Vogel, Pascal Graf, Fabienne Dahinden, Leonie Villiger, Friedhelm Jansen, Sandrine Bony, Bjorn Stevens, and Heini Wernli
Weather Clim. Dynam., 2, 281–309, https://doi.org/10.5194/wcd-2-281-2021, https://doi.org/10.5194/wcd-2-281-2021, 2021
Short summary
Short summary
The interaction of clouds in the trade wind region with the atmospheric flow is complex and at the heart of uncertainties associated with climate projections. In this study, a natural tracer of atmospheric circulation is used to establish a link between air originating from dry regions of the midlatitudes and the occurrence of specific cloud patterns. Two pathways involving transport within midlatitude weather systems are identified, by which air is brought into the trades within 5–10 d.
Annika Oertel, Michael Sprenger, Hanna Joos, Maxi Boettcher, Heike Konow, Martin Hagen, and Heini Wernli
Weather Clim. Dynam., 2, 89–110, https://doi.org/10.5194/wcd-2-89-2021, https://doi.org/10.5194/wcd-2-89-2021, 2021
Short summary
Short summary
Convection embedded in the stratiform cloud band of strongly ascending airstreams in extratropical cyclones (so-called warm conveyor belts) can influence not only surface precipitation but also the
upper-tropospheric potential vorticity (PV) and waveguide. The comparison of intense vs. moderate embedded convection shows that its strength alone is not a reliable measure for upper-tropospheric PV modification. Instead, characteristics of the ambient flow co-determine its dynamical significance.
Emmanouil Flaounas, Matthias Röthlisberger, Maxi Boettcher, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 2, 71–88, https://doi.org/10.5194/wcd-2-71-2021, https://doi.org/10.5194/wcd-2-71-2021, 2021
Short summary
Short summary
In this study we identify the wettest seasons globally and address their meteorological characteristics. We show that in different regions the wettest seasons occur in different times of the year and result from either unusually high frequencies of wet days and/or daily extremes. These high frequencies can be largely attributed to four specific weather systems, especially cyclones. Our analysis uses a thoroughly explained, novel methodology that could also be applied to climate models.
Stefan Rüdisühli, Michael Sprenger, David Leutwyler, Christoph Schär, and Heini Wernli
Weather Clim. Dynam., 1, 675–699, https://doi.org/10.5194/wcd-1-675-2020, https://doi.org/10.5194/wcd-1-675-2020, 2020
Short summary
Short summary
Most precipitation over Europe is linked to low-pressure systems, cold fronts, warm fronts, or high-pressure systems. Based on a massive computer simulation able to resolve thunderstorms, we quantify in detail how much precipitation these weather systems produced during 2000–2008. We find distinct seasonal and regional differences, such as fronts precipitating a lot in fall and winter over the North Atlantic but high-pressure systems mostly in summer over the continent by way of thunderstorms.
Raphael Portmann, Juan Jesús González-Alemán, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 1, 597–615, https://doi.org/10.5194/wcd-1-597-2020, https://doi.org/10.5194/wcd-1-597-2020, 2020
Short summary
Short summary
In September 2018 an intense Mediterranean cyclone with structural similarities to a hurricane, a so-called medicane, caused severe damage in Greece. Its development was uncertain, even just a few days in advance. The reason for this was uncertainties in the jet stream over the North Atlantic 3 d prior to cyclogenesis that propagated into the Mediterranean. They led to an uncertain position of the upper-level disturbance and, as a result, of the position and thermal structure of the cyclone.
Hanin Binder, Maxi Boettcher, Hanna Joos, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 1, 577–595, https://doi.org/10.5194/wcd-1-577-2020, https://doi.org/10.5194/wcd-1-577-2020, 2020
Short summary
Short summary
Warm conveyor belts (WCBs) are important cloud- and
precipitation-producing airstreams in extratropical cyclones. By combining satellite observations with model data from a new reanalysis dataset, this study provides detailed observational insight into the vertical cloud structure of WCBs. We find that the reanalyses essentially capture the observed cloud pattern, but the observations reveal mesoscale structures not resolved by the temporally and spatially much coarser-resolution model data.
Mauro Hermann, Lukas Papritz, and Heini Wernli
Weather Clim. Dynam., 1, 497–518, https://doi.org/10.5194/wcd-1-497-2020, https://doi.org/10.5194/wcd-1-497-2020, 2020
Short summary
Short summary
We find, by tracing backward in time, that air masses causing extensive melt of the Greenland Ice Sheet originate from further south and lower altitudes than usual. Their exceptional warmth further arises due to ascent and cloud formation, which is special compared to near-surface heat waves in the midlatitudes or the central Arctic. The atmospheric systems and transport pathways identified here are crucial in understanding and simulating the atmospheric control of the ice sheet in the future.
Sebastian Schemm, Stefan Rüdisühli, and Michael Sprenger
Weather Clim. Dynam., 1, 459–479, https://doi.org/10.5194/wcd-1-459-2020, https://doi.org/10.5194/wcd-1-459-2020, 2020
Short summary
Short summary
Troughs and ridges are ubiquitous flow features in the upper troposphere and are centerpiece elements of weather and climate research. A novel method is introduced to identify and track the life cycle of troughs and ridges and their orientation. The aim is to close the existing gap between methods that detect the initiation phase and methods that detect the decaying phase of Rossby wave development. Global climatologies, the influence of ENSO and Lagrangian characteristics are discussed.
Cited articles
Afargan, H. and Kaspi, Y.: A midwinter minimum in North Atlantic storm track
intensity in years of a strong jet, Geophys. Res. Lett., 44, 12511–12518, https://doi.org/10.1002/2017GL075136, 2017. a
Boettcher, M. and Wernli, H.: A 10-yr climatology of diabatic Rossby waves in
the Northern Hemisphere, Mon. Weather Rev., 141, 1139–1154,
https://doi.org/10.1175/MWR-D-12-00012.1, 2013. a
Chang, E. K. M.: GCM and observational diagnoses of the seasonal and interannual variations of the Pacific storm track during the cool season, J. Atmos. Sci., 58, 1784–1800, https://doi.org/10.1175/1520-0469(2001)058<1784:GAODOT>2.0.CO;2, 2001. a, b, c
Chang, E. K. M. and Guo, Y.: Comments on the source of the midwinter suppression in storminess over the North Pacific, J. Climate, 24, 5187–5191, https://doi.org/10.1175/2011JCLI3987.1, 2011. a
Chang, E. K. M. and Guo, Y.: Is pacific storm-track activity correlated with
the strength of upstream wave seeding?, J. Climate, 25, 5768–5776,
https://doi.org/10.1175/JCLI-D-11-00555.1, 2012. a
Deng, Y. and Mak, M.: An idealized model study relevant to the dynamics of the midwinter minimum of the Pacific storm track, J. Atmos. Sci., 62, 1209–1225, https://doi.org/10.1175/JAS3400.1, 2005. a
ECMWF: Public Datasets, available at: https://apps.ecmwf.int/datasets/, last access: January 2021. a
Gilet, J.-B., Plu, M., and Riviẽre, G.: Nonlinear baroclinic dynamics of
surface cyclones crossing a zonal jet, J. Atmos. Sci., 66, 3021–3041,
https://doi.org/10.1175/2009JAS3086.1, 2009. a
Harnik, N. and Chang, E. K. M.: The effects of variations in jet width on the
growth of baroclinic waves: Implications for Midwinter Pacific storm track variability, J. Atmos. Sci., 61, 23–40,
https://doi.org/10.1175/1520-0469(2004)061<0023:TEOVIJ>2.0.CO;2, 2004. a
Hoskins, B. J. and Hodges, K. I.: New Perspectives on the Northern Hemisphere
winter storm tracks, J. Atmos. Sci., 59, 1041–1061,
https://doi.org/10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2, 2002. a
Hoskins, B. J., McIntyre, M. E., and Robertson, A. W.: On the use and
significance of isentropic potential vorticity maps, Q. J. Roy. Meteorol. Soc., 111, 877–946, 1985. a
James, I. N.: Suppression of baroclinic instability in horizontally sheared
flows, J. Atmos. Sci., 44, 3710–3720, https://doi.org/10.1175/1520-0469(1987)044<3710:SOBIIH>2.0.CO;2, 1987. a
Lindzen, R. S. and Farrell, B.: A simple approximate result for the maximum
growth rate of baroclinic instabilities, J. Atmos. Sci., 37, 1648–1654,
https://doi.org/10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2, 1980. a
Lorenz, E. N.: Available potential energy and the maintenance of the general
circulation, Tellus, 7, 157–167, https://doi.org/10.3402/tellusa.v7i2.8796, 1955. a
Nakamura, H.: Midwinter suppression of baroclinic wave activity in the
Pacific, J. Atmos. Sci., 49, 1629–1642,
https://doi.org/10.1175/1520-0469(1992)049<1629:MSOBWA>2.0.CO;2, 1992. a, b, c
Nakamura, H. and Sampe, T.: Trapping of synoptic-scale disturbances into the
North-Pacific subtropical jet core in midwinter, Geophys. Res. Lett., 29,
8-1–8-4, https://doi.org/10.1029/2002GL015535, 2002. a, b
Nakamura, N.: An illustrative mmdel of instabilities in meridionally and
vertically sheared flows, J. Atmos. Sci., 50, 357–376,
https://doi.org/10.1175/1520-0469(1993)050<0357:AIMOII>2.0.CO;2, 1993. a
Neu, U., Akperov, M. G., Bellenbaum, N., Benestad, R., Blender, R., Caballero, R., Cocozza, A., Dacre, H. F., Feng, Y., Fraedrich, K., Grieger, J., Gulev, S., Hanley, J., Hewson, T., Inatsu, M., Keay, K., Kew, S. F., Kindem, I., Leckebusch, G. C., Liberato, M. L. R., Lionello, P., Mokhov, I. I., Pinto, J. G., Raible, C. C., Reale, M., Rudeva, I., Schuster, M., Simmonds, I., Sinclair, M., Sprenger, M., Tilinina, N. D., Trigo, I. F., Ulbrich, S., Ulbrich, U., Wang, X. L., and Wernli, H.: IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms, B. Am. Meteorol. Soc., 94, 529–547, https://doi.org/10.1175/BAMS-D-11-00154.1, 2013. a, b
Novak, L., Schneider, T., and Ait-Chaalal, F.: Midwinter suppression of storm
tracks in an idealized zonally symmetric setting, J. Atmos. Sci., 77, 297–313, https://doi.org/10.1175/JAS-D-18-0353.1, 2020. a, b
Orlanski, I. and Katzfey, J.: The life cycle of a cyclone wave in the Southern Hemisphere. Part I: Eddy energy budget, J. Atmos. Sci., 48, 1972–1998, https://doi.org/10.1175/1520-0469(1991)048<1972:TLCOAC>2.0.CO;2, 1991. a
Oruba, L., Lapeyre, G., and Rivière, G.: On the poleward motion of midlatitude cyclones in a baroclinic meandering jet, J. Atmos. Sci., 70,
2629–2649, https://doi.org/10.1175/JAS-D-12-0341.1, 2013. a
Park, H.-S., Chiang, J. C. H., and Son, S.-W.: The role of the Central Asian
Mountains on the midwinter suppression of North Pacific storminess, J. Atmos. Sci., 67, 3706–3720, https://doi.org/10.1175/2010JAS3349.1, 2010. a
Penny, S., Roe, G. H., and Battisti, D. S.: The source of the midwinter
suppression in storminess over the North Pacific, J. Climate, 23, 634–648, https://doi.org/10.1175/2009JCLI2904.1, 2010. a
Penny, S. M., Roe, G. H., and Battisti, D. S.: Reply, J. Climate, 24, 5192–5194, https://doi.org/10.1175/2011JCLI4187.1, 2011. a
Penny, S. M., Battisti, D. S., and Roe, G. H.: Examining mechanisms of
variability within the Pacific storm track: Upstream seeding and jet-core
strength, J. Climate, 26, 5242–5259, https://doi.org/10.1175/JCLI-D-12-00017.1, 2013. a, b
Rivière, G., Arbogast, P., Lapeyre, G., and Maynard, K.: A potential vorticity perspective on the motion of a mid-latitude winter storm, Geophys. Res. Lett., 39, L12808, https://doi.org/10.1029/2012GL052440, 2012. a
Sanders, F. and Gyakum, J. R.: Synoptic-dynamic climatology of the “bomb”,
Mon. Weather Rev., 108, 1589–1606,
https://doi.org/10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2, 1980. a, b, c, d
Schemm, S., Sprenger, M., and Wernli, H.: When during their life cycle are
extratropical cyclones attended by fronts?, B. Am. Meteorol. Soc., 99, 149–165, https://doi.org/10.1175/BAMS-D-16-0261.1, 2018. a
Sprenger, M., Fragkoulidis, G., Binder, H., Croci-Maspoli, M., Graf, P., Grams, C. M., Knippertz, P., Madonna, E., Schemm, S., Škerlak, B., and Wernli, H.: Global climatologies of Eulerian and Lagrangian flow features based on ERA-Interim, B. Am. Meteorol. Soc., 98, 1739–1748, https://doi.org/10.1175/BAMS-D-15-00299.1, 2017.
a
Wernli, H. and Schwierz, C.: Surface Cyclones in the ERA-40 Dataset (1958–2001). Part I: Novel identification method and global climatology, J. Atmos. Sci., 63, 2486–2507, https://doi.org/10.1175/JAS3766.1, 2006. a, b
Yuval, J., Afargan, H., and Kaspi, Y.: The relation between the seasonal
changes in jet characteristics and the Pacific midwinter minimum in eddy
activity, Geophys. Res. Lett., 45, 9995–10002, https://doi.org/10.1029/2018GL078678, 2018. a
Short summary
North Pacific cyclone intensities are reduced in winter, which is in contrast to North Atlantic cyclones and unexpected from the high available growth potential in winter. We investigate this intensity suppression from a cyclone life-cycle perspective and show that in winter Kuroshio cyclones propagate away from the region where they can grow more quickly, East China Sea cyclones are not relevant before spring, and Kamchatka cyclones grow in a region of reduced growth potential.
North Pacific cyclone intensities are reduced in winter, which is in contrast to North Atlantic...