Articles | Volume 5, issue 2
https://doi.org/10.5194/wcd-5-537-2024
https://doi.org/10.5194/wcd-5-537-2024
Research article
 | 
19 Apr 2024
Research article |  | 19 Apr 2024

Warm conveyor belt characteristics and impacts along the life cycle of extratropical cyclones: case studies and climatological analysis based on ERA5

Katharina Heitmann, Michael Sprenger, Hanin Binder, Heini Wernli, and Hanna Joos

Related authors

An object-based and Lagrangian view on an intense hailstorm day in Switzerland as represented in COSMO-1E ensemble hindcast simulations
Killian P. Brennan, Michael Sprenger, André Walser, Marco Arpagaus, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2148,https://doi.org/10.5194/egusphere-2024-2148, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Precipitation extremes in Ukraine from 1979 to 2019: climatology, large-scale flow conditions, and moisture sources
Ellina Agayar, Franziska Aemisegger, Moshe Armon, Alexander Scherrmann, and Heini Wernli
Nat. Hazards Earth Syst. Sci., 24, 2441–2459, https://doi.org/10.5194/nhess-24-2441-2024,https://doi.org/10.5194/nhess-24-2441-2024, 2024
Short summary
Synoptic perspective on the conversion and maintenance of local available potential energy in extratropical cyclones
Marc Federer, Lukas Papritz, Michael Sprenger, and Christian M. Grams
EGUsphere, https://doi.org/10.5194/egusphere-2024-2112,https://doi.org/10.5194/egusphere-2024-2112, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-92,https://doi.org/10.5194/gmd-2024-92, 2024
Preprint under review for GMD
Short summary
The impact of synoptic storm likelihood on European subseasonal forecast uncertainty and their modulation by the stratosphere
Philip Rupp, Jonas Spaeth, Hilla Afargan-Gerstman, Dominik Büeler, Michael Sprenger, and Thomas Birner
EGUsphere, https://doi.org/10.5194/egusphere-2024-1423,https://doi.org/10.5194/egusphere-2024-1423, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary

Related subject area

Dynamical processes in midlatitudes
Towards a process-oriented understanding of the impact of stochastic perturbations on the model climate
Moritz Deinhard and Christian M. Grams
Weather Clim. Dynam., 5, 927–942, https://doi.org/10.5194/wcd-5-927-2024,https://doi.org/10.5194/wcd-5-927-2024, 2024
Short summary
Deepening mechanisms of cut-off lows in the Southern Hemisphere and the role of jet streams: insights from eddy kinetic energy analysis
Henri Rossi Pinheiro, Kevin Ivan Hodges, and Manoel Alonso Gan
Weather Clim. Dynam., 5, 881–894, https://doi.org/10.5194/wcd-5-881-2024,https://doi.org/10.5194/wcd-5-881-2024, 2024
Short summary
Large-scale perspective on extreme near-surface winds in the central North Atlantic
Aleksa Stanković, Gabriele Messori, Joaquim G. Pinto, and Rodrigo Caballero
Weather Clim. Dynam., 5, 821–837, https://doi.org/10.5194/wcd-5-821-2024,https://doi.org/10.5194/wcd-5-821-2024, 2024
Short summary
Divergent convective outflow in ICON deep-convection-permitting and parameterised deep convection simulations
Edward Groot, Patrick Kuntze, Annette Miltenberger, and Holger Tost
Weather Clim. Dynam., 5, 779–803, https://doi.org/10.5194/wcd-5-779-2024,https://doi.org/10.5194/wcd-5-779-2024, 2024
Short summary
Changes in the North Atlantic Oscillation over the 20th century
Stephen Outten and Richard Davy
Weather Clim. Dynam., 5, 753–762, https://doi.org/10.5194/wcd-5-753-2024,https://doi.org/10.5194/wcd-5-753-2024, 2024
Short summary

Cited articles

Bengtsson, L., Hodges, K. I., and Keenlyside, N.: Will extratropical storms intensify in a warmer climate?, J. Climate, 22, 2276–2301, https://doi.org/10.1175/2008JCLI2678.1, 2009. a
Besson, P., Fischer, L. J., Schemm, S., and Sprenger, M.: A global analysis of the dry-dynamic forcing during cyclone growth and propagation, Weather Clim. Dynam., 2, 991–1009, https://doi.org/10.5194/wcd-2-991-2021, 2021. a
Binder, H.: Warm conveyor belts: cloud structure and role for cyclone dynamics and extreme events, PhD Thesis, ETH Zurich, Zurich, https://doi.org/10.3929/ethz-b-000164982, 2017. a
Binder, H., Boettcher, M., Joos, H., and Wernli, H.: The role of warm conveyor belts for the intensification of extratropical cyclones in Northern Hemisphere winter, J. Atmos. Sci., 73, 3997–4020, https://doi.org/10.1175/JAS-D-15-0302.1, 2016. a, b, c, d, e, f, g
Binder, H., Boettcher, M., Joos, H., Sprenger, M., and Wernli, H.: Vertical cloud structure of warm conveyor belts – a comparison and evaluation of ERA5 reanalysis, CloudSat and CALIPSO data, Weather Clim. Dynam., 1, 577–595, https://doi.org/10.5194/wcd-1-577-2020, 2020. a
Download
Short summary
Warm conveyor belts (WCBs) are coherently ascending air streams that occur in extratropical cyclones where they form precipitation and often affect the large-scale flow. We quantified the key characteristics and impacts of WCBs and linked them to different phases in the cyclone life cycle and to different WCB branches. A climatology of these metrics revealed that WCBs are most intense during cyclone intensification and that the cyclonic and anticyclonic WCB branches show distinct differences.