Articles | Volume 5, issue 2
https://doi.org/10.5194/wcd-5-537-2024
https://doi.org/10.5194/wcd-5-537-2024
Research article
 | 
19 Apr 2024
Research article |  | 19 Apr 2024

Warm conveyor belt characteristics and impacts along the life cycle of extratropical cyclones: case studies and climatological analysis based on ERA5

Katharina Heitmann, Michael Sprenger, Hanin Binder, Heini Wernli, and Hanna Joos

Related authors

How relevant are frequency changes of weather regimes for understanding climate change signals in surface precipitation in the North Atlantic-European sector? – a conceptual analysis with CESM1 large ensemble simulations
Luise J. Fischer, David N. Bresch, Dominik Büeler, Christian M. Grams, Matthias Röthlisberger, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1253,https://doi.org/10.5194/egusphere-2024-1253, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Changes in snow avalanche activity in response to climate warming in the Swiss Alps
Stephanie Mayer, Martin Hendrick, Adrien Michel, Bettina Richter, Jürg Schweizer, Heini Wernli, and Alec van Herwijnen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1026,https://doi.org/10.5194/egusphere-2024-1026, 2024
Short summary
Characteristics and dynamics of extreme winters in the Barents Sea in a changing climate
Katharina Hartmuth, Heini Wernli, and Lukas Papritz
EGUsphere, https://doi.org/10.5194/egusphere-2024-878,https://doi.org/10.5194/egusphere-2024-878, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
A Lagrangian framework for detecting and characterizing the descent of foehn from Alpine to local scales
Lukas Jansing, Lukas Papritz, and Michael Sprenger
Weather Clim. Dynam., 5, 463–489, https://doi.org/10.5194/wcd-5-463-2024,https://doi.org/10.5194/wcd-5-463-2024, 2024
Short summary
The upstream–downstream connection of North Atlantic and Mediterranean cyclones in semi-idealized simulations
Alexander Scherrmann, Heini Wernli, and Emmanouil Flaounas
Weather Clim. Dynam., 5, 419–438, https://doi.org/10.5194/wcd-5-419-2024,https://doi.org/10.5194/wcd-5-419-2024, 2024
Short summary

Related subject area

Dynamical processes in midlatitudes
Changes in the North Atlantic Oscillation over the 20th century
Stephen Outten and Richard Davy
Weather Clim. Dynam., 5, 753–762, https://doi.org/10.5194/wcd-5-753-2024,https://doi.org/10.5194/wcd-5-753-2024, 2024
Short summary
Life cycle dynamics of Greenland blocking from a potential vorticity perspective
Seraphine Hauser, Franziska Teubler, Michael Riemer, Peter Knippertz, and Christian M. Grams
Weather Clim. Dynam., 5, 633–658, https://doi.org/10.5194/wcd-5-633-2024,https://doi.org/10.5194/wcd-5-633-2024, 2024
Short summary
Influence of radiosonde observations on the sharpness and altitude of the midlatitude tropopause in the ECMWF IFS
Konstantin Krüger, Andreas Schäfler, Martin Weissmann, and George C. Craig
Weather Clim. Dynam., 5, 491–509, https://doi.org/10.5194/wcd-5-491-2024,https://doi.org/10.5194/wcd-5-491-2024, 2024
Short summary
Analysing 23 years of warm-season derechos in France: a climatology and investigation of synoptic and environmental changes
Lucas Fery and Davide Faranda
Weather Clim. Dynam., 5, 439–461, https://doi.org/10.5194/wcd-5-439-2024,https://doi.org/10.5194/wcd-5-439-2024, 2024
Short summary
A Lagrangian framework for detecting and characterizing the descent of foehn from Alpine to local scales
Lukas Jansing, Lukas Papritz, and Michael Sprenger
Weather Clim. Dynam., 5, 463–489, https://doi.org/10.5194/wcd-5-463-2024,https://doi.org/10.5194/wcd-5-463-2024, 2024
Short summary

Cited articles

Bengtsson, L., Hodges, K. I., and Keenlyside, N.: Will extratropical storms intensify in a warmer climate?, J. Climate, 22, 2276–2301, https://doi.org/10.1175/2008JCLI2678.1, 2009. a
Besson, P., Fischer, L. J., Schemm, S., and Sprenger, M.: A global analysis of the dry-dynamic forcing during cyclone growth and propagation, Weather Clim. Dynam., 2, 991–1009, https://doi.org/10.5194/wcd-2-991-2021, 2021. a
Binder, H.: Warm conveyor belts: cloud structure and role for cyclone dynamics and extreme events, PhD Thesis, ETH Zurich, Zurich, https://doi.org/10.3929/ethz-b-000164982, 2017. a
Binder, H., Boettcher, M., Joos, H., and Wernli, H.: The role of warm conveyor belts for the intensification of extratropical cyclones in Northern Hemisphere winter, J. Atmos. Sci., 73, 3997–4020, https://doi.org/10.1175/JAS-D-15-0302.1, 2016. a, b, c, d, e, f, g
Binder, H., Boettcher, M., Joos, H., Sprenger, M., and Wernli, H.: Vertical cloud structure of warm conveyor belts – a comparison and evaluation of ERA5 reanalysis, CloudSat and CALIPSO data, Weather Clim. Dynam., 1, 577–595, https://doi.org/10.5194/wcd-1-577-2020, 2020. a
Download
Short summary
Warm conveyor belts (WCBs) are coherently ascending air streams that occur in extratropical cyclones where they form precipitation and often affect the large-scale flow. We quantified the key characteristics and impacts of WCBs and linked them to different phases in the cyclone life cycle and to different WCB branches. A climatology of these metrics revealed that WCBs are most intense during cyclone intensification and that the cyclonic and anticyclonic WCB branches show distinct differences.