Articles | Volume 6, issue 1
https://doi.org/10.5194/wcd-6-151-2025
https://doi.org/10.5194/wcd-6-151-2025
Research article
 | 
31 Jan 2025
Research article |  | 31 Jan 2025

Frequency anomalies and characteristics of extratropical cyclones during extremely wet, dry, windy, and calm seasons in the extratropics

Hanin Binder and Heini Wernli

Related authors

Cirrus formation regimes – Data driven identification and quantification of mineral dust effect
Kai Jeggle, David Neubauer, Hanin Binder, and Ulrike Lohmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2559,https://doi.org/10.5194/egusphere-2024-2559, 2024
Short summary
Warm conveyor belt characteristics and impacts along the life cycle of extratropical cyclones: case studies and climatological analysis based on ERA5
Katharina Heitmann, Michael Sprenger, Hanin Binder, Heini Wernli, and Hanna Joos
Weather Clim. Dynam., 5, 537–557, https://doi.org/10.5194/wcd-5-537-2024,https://doi.org/10.5194/wcd-5-537-2024, 2024
Short summary
Warm conveyor belts in present-day and future climate simulations – Part 1: Climatology and impacts
Hanna Joos, Michael Sprenger, Hanin Binder, Urs Beyerle, and Heini Wernli
Weather Clim. Dynam., 4, 133–155, https://doi.org/10.5194/wcd-4-133-2023,https://doi.org/10.5194/wcd-4-133-2023, 2023
Short summary
Warm conveyor belts in present-day and future climate simulations – Part 2: Role of potential vorticity production for cyclone intensification
Hanin Binder, Hanna Joos, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 4, 19–37, https://doi.org/10.5194/wcd-4-19-2023,https://doi.org/10.5194/wcd-4-19-2023, 2023
Short summary
The storm-track suppression over the western North Pacific from a cyclone life-cycle perspective
Sebastian Schemm, Heini Wernli, and Hanin Binder
Weather Clim. Dynam., 2, 55–69, https://doi.org/10.5194/wcd-2-55-2021,https://doi.org/10.5194/wcd-2-55-2021, 2021
Short summary

Related subject area

Dynamical processes in midlatitudes
Two different perspectives on heatwaves within the Lagrangian framework
Amelie Mayer and Volkmar Wirth
Weather Clim. Dynam., 6, 131–150, https://doi.org/10.5194/wcd-6-131-2025,https://doi.org/10.5194/wcd-6-131-2025, 2025
Short summary
From sea to sky: understanding the sea surface temperature impact on an atmospheric blocking event using sensitivity experiments with the ICOsahedral Nonhydrostatic (ICON) model
Svenja Christ, Marta Wenta, Christian M. Grams, and Annika Oertel
Weather Clim. Dynam., 6, 17–42, https://doi.org/10.5194/wcd-6-17-2025,https://doi.org/10.5194/wcd-6-17-2025, 2025
Short summary
Simulating record-shattering cold winters of the beginning of the 21st century in France
Camille Cadiou and Pascal Yiou
Weather Clim. Dynam., 6, 1–15, https://doi.org/10.5194/wcd-6-1-2025,https://doi.org/10.5194/wcd-6-1-2025, 2025
Short summary
Detection and consequences of atmospheric deserts: insights from a case study
Fiona Fix, Georg Mayr, Achim Zeileis, Isabell Stucke, and Reto Stauffer
Weather Clim. Dynam., 5, 1545–1560, https://doi.org/10.5194/wcd-5-1545-2024,https://doi.org/10.5194/wcd-5-1545-2024, 2024
Short summary
A global climatology of sting-jet extratropical cyclones
Suzanne L. Gray, Ambrogio Volonté, Oscar Martínez-Alvarado, and Ben J. Harvey
Weather Clim. Dynam., 5, 1523–1544, https://doi.org/10.5194/wcd-5-1523-2024,https://doi.org/10.5194/wcd-5-1523-2024, 2024
Short summary

Cited articles

Benjamini, Y. and Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. Roy. Stat. Soc., 57, 289–300, https://doi.org/10.1111/j.2517-6161.1995.tb02031.x, 1995. a
Binder, H., Rivière, G., Arbogast, P., Maynard, K., Bosser, P., Joly, B., and Labadie, C.: Dynamics of forecast-error growth along cut-off Sanchez and its consequence for the prediction of a high-impact weather event over southern France, Q. J. Roy. Meteor. Soc., 147, 3263–3285, https://doi.org/10.1002/qj.4127, 2021. a
Binder, H., Joos, H., Sprenger, M., and Wernli, H.: Warm conveyor belts in present-day and future climate simulations – Part 2: Role of potential vorticity production for cyclone intensification, Weather Clim. Dynam., 4, 19–37, https://doi.org/10.5194/wcd-4-19-2023, 2023. a, b
Black, E., Blackburn, M., Harrison, G., Hoskins, B., and Methven, J.: Factors contributing to the summer 2003 European heatwave, Weather, 59, 217–223, https://doi.org/10.1256/wea.74.04, 2004. a
Boettcher, M., Röthlisberger, M., Attinger, R., Rieder, J., and Wernli, H.: The ERA5 extreme seasons explorer as a basis for research at the weather and climate interface, B. Am. Meteorol. Soc., 104, E631–E644, https://doi.org/10.1175/BAMS-D-21-0348.1, 2023 (data available at: https://intexseas-explorer.ethz.ch, last access: 20 September 2024). a, b, c, d, e, f, g
Download
Short summary
This study presents a systematic analysis of frequency anomalies and characteristics of extratropical cyclones during extremely wet, dry, windy, and calm winter and summer seasons in the extratropics based on 1050 years of present-day climate simulations. We show that anomalies in cyclone frequency, intensity, and stationarity are crucial to the occurrence of many extreme seasons and that these anomaly patterns exhibit substantial regional and seasonal variability.