Articles | Volume 6, issue 2
https://doi.org/10.5194/wcd-6-505-2025
https://doi.org/10.5194/wcd-6-505-2025
Research article
 | 
06 May 2025
Research article |  | 06 May 2025

Characteristics and dynamics of extreme winters in the Barents Sea in a changing climate

Katharina Hartmuth, Heini Wernli, and Lukas Papritz

Related authors

Dynamics, predictability, impacts, and climate change considerations of the catastrophic Mediterranean Storm Daniel (2023)
Emmanouil Flaounas, Stavros Dafis, Silvio Davolio, Davide Faranda, Christian Ferrarin, Katharina Hartmuth, Assaf Hochman, Aristeidis Koutroulis, Samira Khodayar, Mario Marcello Miglietta, Florian Pantillon, Platon Patlakas, Michael Sprenger, and Iris Thurnherr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2809,https://doi.org/10.5194/egusphere-2024-2809, 2024
Short summary
Identification, characteristics and dynamics of Arctic extreme seasons
Katharina Hartmuth, Maxi Boettcher, Heini Wernli, and Lukas Papritz
Weather Clim. Dynam., 3, 89–111, https://doi.org/10.5194/wcd-3-89-2022,https://doi.org/10.5194/wcd-3-89-2022, 2022
Short summary
Moisture origin, transport pathways, and driving processes of intense wintertime moisture transport into the Arctic
Lukas Papritz, David Hauswirth, and Katharina Hartmuth
Weather Clim. Dynam., 3, 1–20, https://doi.org/10.5194/wcd-3-1-2022,https://doi.org/10.5194/wcd-3-1-2022, 2022
Short summary
The role of air–sea fluxes for the water vapour isotope signals in the cold and warm sectors of extratropical cyclones over the Southern Ocean
Iris Thurnherr, Katharina Hartmuth, Lukas Jansing, Josué Gehring, Maxi Boettcher, Irina Gorodetskaya, Martin Werner, Heini Wernli, and Franziska Aemisegger
Weather Clim. Dynam., 2, 331–357, https://doi.org/10.5194/wcd-2-331-2021,https://doi.org/10.5194/wcd-2-331-2021, 2021
Short summary

Related subject area

Role of atmospheric dynamics in climate change projections
On the role of moist and dry processes in atmospheric blocking biases in the Euro-Atlantic region in CMIP6
Edgar Dolores-Tesillos, Olivia Martius, and Julian Quinting
Weather Clim. Dynam., 6, 471–487, https://doi.org/10.5194/wcd-6-471-2025,https://doi.org/10.5194/wcd-6-471-2025, 2025
Short summary
The future North Atlantic jet stream and storm track: relative contributions from sea ice and sea surface temperature changes
Daniel Köhler, Petri Räisänen, Tuomas Naakka, Kalle Nordling, and Victoria A. Sinclair
EGUsphere, https://doi.org/10.5194/egusphere-2024-3713,https://doi.org/10.5194/egusphere-2024-3713, 2024
Short summary
Could an extremely cold central European winter such as 1963 happen again despite climate change?
Sebastian Sippel, Clair Barnes, Camille Cadiou, Erich Fischer, Sarah Kew, Marlene Kretschmer, Sjoukje Philip, Theodore G. Shepherd, Jitendra Singh, Robert Vautard, and Pascal Yiou
Weather Clim. Dynam., 5, 943–957, https://doi.org/10.5194/wcd-5-943-2024,https://doi.org/10.5194/wcd-5-943-2024, 2024
Short summary
Impact of climate change on persistent cold-air pools in an alpine valley during the 21st century
Sara Bacer, Julien Beaumet, Martin Ménégoz, Hubert Gallée, Enzo Le Bouëdec, and Chantal Staquet
Weather Clim. Dynam., 5, 211–229, https://doi.org/10.5194/wcd-5-211-2024,https://doi.org/10.5194/wcd-5-211-2024, 2024
Short summary
Data-driven discovery of mechanisms underlying present and near-future precipitation changes and variability in Brazil
Márcia Talita A. Marques, Maria Luiza Kovalski, Gabriel M. P. Perez, Thomas C. M. Martin, Edson L. S. Y. Barbosa, Pedro Augusto S. M. Ribeiro, and Roilan H. Valdes
EGUsphere, https://doi.org/10.5194/egusphere-2024-48,https://doi.org/10.5194/egusphere-2024-48, 2024
Short summary

Cited articles

Akperov, M., Rinke, A., Mokhov, I. I., Semenov, V. A., Parfenova, M. R., Matthes, H., Adakudlu, M., Boberg, F., Christensen, J. H., Dembitskaya, M. A., Dethloff, K., Fettweis, X., Gutjahr, O., Heinemann, G., Koenigk, T., Koldunov, N. V., Laprise, R., Mottram, R., Nikiéma, O., Sein, D., Sobolowski, S., Winger, K., and Zhang, W.: Future projections of cyclone activity in the Arctic for the 21st century from regional climate models (Arctic-CORDEX), Global Planet. Change, 182, 103005, https://doi.org/10.1016/j.gloplacha.2019.103005, 2019. a
Årthun, M., Eldevik, T., Smedsrud, L. H., Skagseth, Ã., and Ingvaldsen, R. B.: Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat, J. Climate, 25, 4736–4743, https://doi.org/10.1175/JCLI-D-11-00466.1, 2012. a
Bintanja, R., van der Wiel, K., van der Linden, E. C., Reusen, J., Bogerd, L., Krikken, F., and Selten, F. M.: Strong future increases in Arctic precipitation variability linked to poleward moisture transport, Sci. Adv., 6, eaax6869, https://doi.org/10.1126/sciadv.aax6869, 2020. a
Bogerd, L., Linden, E. C., Krikken, F., and Bintanja, R.: Climate state dependence of Arctic precipitation variability, J. Geophys. Res.-Atmos., 125, e2019JD031772, https://doi.org/10.1029/2019JD031772, 2020. a
Boisvert, L. N., Petty, A. A., and Stroeve, J. C.: The impact of the extreme winter 2015/16 Arctic cyclone on the Barents-Kara Seas, Mon. Weather Rev., 144, 4279–4287, https://doi.org/10.1175/MWR-D-16-0234.1, 2016. a
Download
Short summary
In this study, we use large-ensemble climate model simulations to analyze extreme winters in the Barents Sea in a changing climate. We find that variability in both atmospheric processes and sea ice conditions determines the formation of such seasons in the present-day climate. The reduction in sea ice variability results in a decreasing importance of surface boundary conditions in a warmer climate, while the robust link shown for surface weather systems persists.
Share