Articles | Volume 3, issue 1
https://doi.org/10.5194/wcd-3-89-2022
https://doi.org/10.5194/wcd-3-89-2022
Research article
 | 
31 Jan 2022
Research article |  | 31 Jan 2022

Identification, characteristics and dynamics of Arctic extreme seasons

Katharina Hartmuth, Maxi Boettcher, Heini Wernli, and Lukas Papritz

Related authors

Quantifying forecast uncertainty of Mediterranean cyclone-related surface weather extremes in ECMWF ensemble forecasts. Part 1: Method and case studies
Katharina Hartmuth, Dominik Büeler, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2025-4111,https://doi.org/10.5194/egusphere-2025-4111, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Storm Boris (2024) in the current and future climate: a dynamics-centered contextualization, and some lessons learnt
Jacopo Riboldi, Robin Noyelle, Ellina Agayar, Hanin Binder, Marc Federer, Katharina Hartmuth, Michael Sprenger, Iris Thurnherr, and Selvakumar Vishnupriya
EGUsphere, https://doi.org/10.5194/egusphere-2025-3599,https://doi.org/10.5194/egusphere-2025-3599, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Characteristics and dynamics of extreme winters in the Barents Sea in a changing climate
Katharina Hartmuth, Heini Wernli, and Lukas Papritz
Weather Clim. Dynam., 6, 505–520, https://doi.org/10.5194/wcd-6-505-2025,https://doi.org/10.5194/wcd-6-505-2025, 2025
Short summary
Dynamics, predictability, impacts, and climate change considerations of the catastrophic Mediterranean Storm Daniel (2023)
Emmanouil Flaounas, Stavros Dafis, Silvio Davolio, Davide Faranda, Christian Ferrarin, Katharina Hartmuth, Assaf Hochman, Aristeidis Koutroulis, Samira Khodayar, Mario Marcello Miglietta, Florian Pantillon, Platon Patlakas, Michael Sprenger, and Iris Thurnherr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2809,https://doi.org/10.5194/egusphere-2024-2809, 2024
Short summary
Moisture origin, transport pathways, and driving processes of intense wintertime moisture transport into the Arctic
Lukas Papritz, David Hauswirth, and Katharina Hartmuth
Weather Clim. Dynam., 3, 1–20, https://doi.org/10.5194/wcd-3-1-2022,https://doi.org/10.5194/wcd-3-1-2022, 2022
Short summary

Cited articles

Arrhenius, S.: On the influence of carbonic acid in the air upon the temperature of the ground, Philos. Mag. J. Sci., 5, 237–276, https://doi.org/10.1080/14786449608620846, 1896. a
Binder, H., Boettcher, M., Grams, C. M., Joos, H., Pfahl, S., and Wernli, H.: Exceptional air mass transport and dynamical drivers of an extreme wintertime Arctic warm event, Geophys. Res. Lett., 44, 12028–12036, https://doi.org/10.1002/2017GL075841, 2017. a, b
Blunden, J. and Arndt, D. S.: State of the Climate in 2016, B. Am. Meteorol. Soc., 98, Si–S277, https://doi.org/10.1175/2017BAMSStateoftheClimate.1, 2017. a, b
Boisvert, L. N., Petty, A. A., and Stroeve, J. C.: The impact of the extreme winter 2015/16 Arctic cyclone on the Barents–Kara Seas, Mon. Weather Rev., 144, 4279–4287, https://doi.org/10.1175/MWR-D-16-0234.1, 2016. a, b, c, d
Burt, M., Randall, D., and Branson, M.: Dark warming, J. Climate, 29, 705–719, https://doi.org/10.1175/JCLI-D-15-0147.1, 2016. a
Download
Short summary
In this study, we introduce a novel method to objectively define and identify extreme Arctic seasons based on different surface variables. We find that such seasons are resulting from various combinations of unusual seasonal conditions. The occurrence or absence of different atmospheric processes strongly affects the character of extreme Arctic seasons. Further, changes in sea ice and sea surface temperature can strongly influence the formation of such a season in distinct regions.
Share